Loop transformations and parallelization

Claude Tadonki

LAL/CNRS/IN2P3 University of Paris-Sud
claude.tadonki@u-psud.fr

December 2010
Introduction

Most of the time, the most time consuming part of a program is on loops. Thus, loops optimization is critical in high performance computing. Depending on the target architecture, the goal of loops transformations are:

- improve data reuse and data locality
- efficient use of memory hierarchy
- reducing overheads associated with executing loops
- instructions pipeline
- maximize parallelism

Loop transformations can be performed at different levels by the programmer, the compiler, or specialized tools. At high level, some well known transformations are commonly considered:

- loop interchange
- loop reversal
- loop skewing
- loop blocking
- loop (node) splitting
- loop fusion
- loop fission
- loop unrolling
- loop unswitching
- loop inversion
- loop vectorization
- loop parallelization
Extract and analyze the dependencies of a computation from its polyhedral model is a fundamental step toward loop optimization or scheduling.

Definition

For a given variable \(V \) and given indexes \(I_1, I_2 \), if the computation of \(X(I_1) \) requires the value of \(X(I_2) \), then \(I_1 - I_2 \) is called a dependence vector for variable \(V \). Drawing all the dependence vectors within the computation polytope yields the so-called dependencies diagram.

Example

The dependence vectors are \((1, 0), (0, 1), (-1, 1) \).

\[
\begin{align*}
\text{for } (j=1; \ j<= \ n; \ j++) \\
\text{for } (i=1; \ i<= \ n; \ i++) \\
V[i][j] &= f(V[i-1][j], \ V[i][j-1], V[i+1][j-1]);
\end{align*}
\]
Definition

The computation on the entire domain of a given loop can be performed following any valid schedule. A timing function t_V for variable V yields a valid schedule if and only if

$$t(x) > t(x - d), \forall d \in D_V,$$

where D_V is the set of all dependence vectors for variable V. For regular loops, affine schedules (i.e. $t(x) = u^T x + v$) are required. In that case, we should have

$$u^T d > 0, \forall d \in D_V.$$

Loop scheduling is important for

- expressing the loop (if not yet done)
- rewriting the loop (for a specific purpose)
- automatic loop transformations
Example

The dependence vectors are $d_1 = (1, 0)$, $d_2 = (0, 1)$, $d_3 = (-1, 1)$.

A valid schedule is given by $t(i, j) = i + n(j - 1)$ (i.e. $u = (1, n)^T$ and $v = -n$). We have $u^T d_1 = 1$, $u^T d_2 = n$, $u^T d_3 = -1 + n > 0$, for $n > 1$.

Exercise 1. Show that $t(i, j) = n(i - 1) + j$ is not valid.

Exercise 2. Exhibit another valid schedule (check anti-diagonal one).
Loop interchange

Definition

The **loop interchange** transformation switches the order of loops in order to improve data locality or increase parallelism.

\[
\begin{align*}
\text{For } i &= 1 \text{ to } N \\
\text{For } j &= 1 \text{ to } N \\
M[i][j] &= 3i+j
\end{align*}
\]

\[
\begin{align*}
\text{For } j &= 1 \text{ to } N \\
\text{For } i &= 1 \text{ to } N \\
M[i][j] &= 3i+j
\end{align*}
\]

Figure: Loop interchange

Exercise 1. Is it always valid to apply the *loop interchange*? Explain.

Exercise 2. Give one example where *loop interchange* can help to improve data locality.

Exercise 3. Write and interchange a nested loops that calculates the sum of the values of a \(N \times M\) upper-triangular matrix \(G\).
C. Tadonki – Loop transformations

Loop reversal

Definition

The **loop reversal** transformation reverses the order in which the index variable moves. This can help **eliminate dependencies** and thus **enable other optimizations**.

![Figure: Loop reversal](image)

In order to apply this transformation, one should care about

- the direction of the dependence vector
- the commutativity of the computation

Exercise 1. Is it always valid to apply the **loop reversal**? Explain.

Exercise 2. Write and reverse a loop that calculates the sum of the values of a \(N \)-array \(V \).
Definition

The **loop skewing** transformation changes the shape of the iteration space without changing the dependencies. It looks like a geometrical transformation, which can help to expose a canonical parallelism.

\[
\text{For } i = 2 \text{ to } N \\
\text{For } j = 2 \text{ to } N \\
\]

\[
A[i][j] = B[i][i+j-2]
\]

\[
\text{For } i = 2 \text{ to } N \\
\text{For } j = 2 \text{ to } N \\
B[i][i+j-2] = B[i-1][i+j-3] + B[i][i+j-3]
\]

\[
k = i+j-2
\]

\[
\text{For } i = 2 \text{ to } N \\
\text{For } k = i \text{ to } i+N-2 \\
B[i][k] = B[i-1][k-1] + B[i][k-1]
\]

Our loop can now be parallelized along the k (i.e. j) axis.
Loop blocking is a common loop transformation which consists in breaking the entire loop into chunks. This is mainly done on the iteration space and can be seen as a task partitioning.

Loop blocking can be considered for:
- improve cache performance (matrix product is a good example)
- derive a coarse grained parallelism from a fine grained model
- handle memory constraints
Loop splitting breaks a loop into multiple loops which have the same bodies but iterate over different contiguous portions of the index range.

A special case of loop splitting is the so-called loop speeling, where first (or last) few iterations are isolated from the main loop and performed outside.
Loop fusion (also called loop jamming) combines two adjacent isomorphic loops. Its purpose is to:
- reduce loop overheads
- improve (immediat) data reuse
- reduce data transfers
Definition

Loop fission (also called loop distribution) breaks a loop into multiple loops over the same index range but each taking only a part of the loop’s body.

\[
\begin{align*}
\text{For } i = 1 \text{ to } N & \\
U[i] &= 2*A[i]; \\
V[i] &= 3*A[i]+1;
\end{align*}
\]

Its purpose is to

- achieve better utilization of locality of reference
- isolate parallelizable loops
- create independent loops, hence creating separate tasks
Definition

Loop unrolling (also called loop unwinding) aggregates consecutive steps of the loop and write them explicitly (without loop controls).

\[\text{For } i = 3 \text{ to } N \]
\[U[i] = 2 \times U[i-1] + U[i-2]; \]

\[\text{For } i = 3 \text{ to } N \text{ step 2} \]
\[U[i] = 2 \times U[i-1] + U[i-2]; \]
\[U[i+1] = 2 \times U[(i+1)-1] + U[(i+1)-2]; \]

\[\text{For } i = 3 \text{ to } N \text{ step 2} \]
\[U[i] = 2 \times U[i-1] + U[i-2]; \]
\[U[i+1] = 2 \times U[i] + U[i-1]; \]

Figure: Loop unrolling with factor 2
Loop unswitching moves a conditional inside a loop outside of it by duplicating the loop’s body accordingly.

Its purpose is to:
- remove intensive (conditional) tests
- simplify the body of the loop
Loop inversion replaces a while loop by an if block containing a do..while loop.

i = 0;
while (i<N)
 U[i] = 2*A[i];
i++;

i = 0;
if(i<N)
do
 U[i] = 2*A[i];
i++;
while (i<N)
Definition

Loop vectorization attempts to rewrite the loop in order to execute its body using **vector instructions**. Such instructions are commonly referred to as **SIMD (Single Instruction Multiple Data)**, where multiple identical operations are performed simultaneously by the hardware.

Figure: Loop vectorization scheme (vectors of length 4)
Loop parallelization restructures the loop to run efficiently on multiprocessor systems. This is a major topic in automatic/systematic parallelization.

Different kinds of loop transformations can be applied in order to expose the parallelism before moving into explicit parallelization.

